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Abstract—Higher order elements with additional degrees of freedom are implemented for three-
dimensional elastostatic problems through the coincident collocation of regularized forms of the
displacement and the tangent derivative boundary integral equations. The nodal values of the
displacements, the tractions and their tangential derivatives with respect to two orthogonal direc-
tions are used as the degrees of freedom associated with the functional representation of the
boundary variables. Since the surface gradients of the displacements at the collocation points are
immediately recovered from the boundary solution, all the stress components are directly obtained
at those locations. To demonstrate the accuracy and utility of this approach, a test case is presented
in which the rgsults provided by incomplete quartic elements are compared to the ones obtained
using the quadratic elements of the “serendipity” family. The methodology presented here is general
and can be easily extended to other problems amenable to a boundary integral formulation.

INTRODUCTION

The conventional boundary integral equations are usually obtained from the interior rep-
resentation for the displacements by letting the source point go to a point on the boundary.
If r denotes the distance between the source and the field points and d specifies the number
of space dimensions, the stronger singularities contained in the kernels of these equations
are O(r' ~“) in the limit as r — 0 and the Cauchy principal value (CPV) concept can be used
to render meaning to the integrals in which they appear. The normal and tangent derivative
boundary integral equations arise as limit forms of the gradient of the interior representation
for the displacements with respect to the source point coordinates. These equations are
termed “‘hypersingular’ since they involve kernels which are O(r~9) in the limit as r — 0,
but the limits of these representations do exist. The integrals containing such kernels can
be interpreted in the sense of the finite part as proposed by Hadamard (1923), since they
do not exist in a CPV sense.

The derivative boundary integral equations have been of significant importance in
many applications and different alternatives to overcome the difficulties asssociated with
their numerical implementation have been summarized by Lutz et al. (1991). For the case
of open regions, Krishnasamy et al. (1990) have shown that the integrals associated with
the hypersingular kernels can be computed without relying on a finite part interpretation.
Here, before the limit is taken to form a normal derivative (traction) boundary integral
equation, the first two terms in a Taylor series expansion of the density function in the
hypersingular integrals are subtracted and added back. Then use is made of Stokes’ theorem
to “convert” these added back terms into regular line integrals and less severely singular
integrals on the open surface. For the case of closed domains, Rudolphi (1991) and Liu
and Rudolphi (1991) have taken another approach in which certain integral identities
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pertaining to the fundamental solution and its derivatives were used instead of Stokes’
theorem to reduce the singularity of the added back terms. In both instances, the most
strongly singular integral resulting from the added back terms contained a singularity
comparable to the weaker kernel of the representation and, by direct association of these
terms, the weaker kernel was regularized as well. Although the resulting boundary integrals
were analytically regularized, for the case of elasticity they mixed the different boundary
variable types making them not well suited for numerical treatment.

However, Rudolphi and Muci-Kichler (1991) have presented completely regularized
forms of the derivative equations for two-dimensional elasticity (closed domains) in which
only the displacements, the tractions and the tangential derivative of the displacements
appeared in the resulting expressions. Here, since only the “tangent part” of the Taylor
series expansion was used in the regularization of the hypersingular integrals, the weaker
kernels were regularized independently and, in the case of the tangent derivative equations,
the integrability theorem was also employed. The final equations contained no singularities
and all the integrals could be evaluated using the standard Gaussian quadrature formulae.
The same methodology was extended by Muci-Kiichler and Rudolphi (1993a) to three-
dimensional elasticity where it was necessary to use a form of Stokes’ theorem in the
derivation of the tangent derivative equations and the resulting expressions contained only
weak O(r~ ") singularities. It should be mentioned that other regularizations of the derivative
boundary integral equations, like the one presented by Sladek er al. (1993), are also possible.

In elasticity the hypersingular boundary integral equations commonly used are the
traction equations. They have been found to be especially useful in problems involving
overlapping or crack-like surfaces where the displacement equations are degenerate. In
these situations, the displacement and the traction equations play a complementary role
since they are collocated at the same spatial locations but on surfaces with opposite normal
directions. However, on portions of a boundary with a unique normal direction, it has
been shown that the displacement and the traction equations are not independent and,
consequently, they cannot be simultaneously collocated at the same boundary points.

Nevertheless, when the point collocation method is used to solve the boundary integral
equations, the tangent derivative equations are numerically independent of the displacement
and traction equations and thus can be simultaneously collocated with either of them at
the same boundary points. Watson (1986) used this idea to construct isoparametric Her-
mitian cubic boundary elements for plane strain problems. The numerical implementation
presented there was cumbersome, since a regularization process was not explicitly employed
to obtain a form of the derivative equations in which the singuiarities of the kernels were
removed. For the potential problem and for two-dimensional elasticity Rudolphi (1989)
and Muci-Kiichler and Rudolphi (1993b) have used regularized forms of the tangent
derivative equations to construct higher order elements through the coincident collocation
of the conventional and the tangent derivative equations. Here, additional degrees of
freedom were incorporated in the approximation of the field variables without inroducing
additional collocation points and the tangent derivative equations provided the required
extra equations. For the elastostatic case, the nodal values of the displacements, the tractions
and their tangential derivatives were used as the degrees of freedom associated with the
Hermitian elements. In this fashion, the tangential derivatives of the boundary variables
were directly recovered at the collocation points with commensurate accuracy as the primi-
tive variables. Consequently, the tangential strain, and hence the boundary stresses, were
determined without employing the derivatives of the interpolation functions.

Krishnasamy et af. (1992) have addressed the continuity requirements that should be
satisfied in order to use the derivative boundary integral equations. Theoretically, a sufficient
condition for the hypersingular integrals to exist is that the density functions must be C'*
(i.e. have Holder continuous first derivatives) in the neighborhood of the source point.
Consequently, with the conventional boundary elements, the completely discontinuous ones
have been used in conjunction with the derivative equations since at interior points the
functional representation is C*™. Also, several types of C' continuous boundary elements
have been employed to allow the collocation of the derivative equations at element inter-
faces. In particular, for three-dimensional problems, Liu and Rizzo (1991) have successfully
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used Overhauser C' continuous boundary elements for the solution of acoustic wave
problems.

In this paper, higher order elements with additional degrees of freedom for three-
dimensional elasticity are implemented through the coincident collocation of the con-
ventional and the tangent derivative boundary integral equations. These elements include
nodal values of the tangential derivatives of the displacements and the tractions in two
orthogonal directions as part of the interpolation of the boundary variables and they only
provide C' continuity at the collocation points when they are located at element interfaces.
As in the two-dimensional case, at the locations where the tangent derivative equations are
collocated, the boundary stresses are immediately recovered from the boundary solution.

THE CONVENTIONAL AND TANGENT DERIVATIVE BOUNDARY INTEGRAL EQUATIONS

For a closed domain bounded by a surface S, the representation integral for the
displacements in three-dimensional elasticity can be written in the following form (Liu and
Rudolphi, 1991)

L Ty(x, &) {u;(x) —u;(£)} dS(x) = L Uy(x, £)1,(x) dS(x), )

where x = (x), x,,x3) and & = (&, &, £3) denote the field and source point coordinates, u;
and ¢, are the displacement and traction components, and the kernels U; and T, correspond
to the fundamental solution displacement and traction tensors. For isotropy, the fun-
damental tensors are given by

1 1
Uy(x,8) = Tomu(i—v) (;)[(3_4v)5ij+r,ir‘j] )
T i (1>{6'1253 1-2 }
ii(x’é)—m P %[( —=2v)0,+3rr }+ (1 =2v)(r jn;—r,n)) ¢, 3

where Tj; = E;,,n Uy, and Ejy = 26,04+ u(849,,+6,6;,) is the fourth-order material
property tensor describing the elastic medium. Lamé’s constants are denoted by 4 and p, v
is Poisson’s ratio, n; are the components of the unit outward normal to the boundary S at
the field point x, r = |[x—¢| is the distance between the source and the field point and
r; = (x;—¢;)/r. Here, the comma notation has been used to indicate differentiation with
respect to the coordinates at x. This convention will be followed in the sequel while
differentiation with respect to the coordinates at &, wherever it occurs, will be always
explicitly written out.

If the displacement components are continuous in the vicinity of the source point &,
the difference u,(x) —u;(€) is O(r) in the limit as r — 0 and the integrands in eqn (1) contain
only weak O(1/r) singularities. Consequently, one can let the interior point & go to a point
z on the boundary to obtain the following regularized form of the conventional boundary
integral equation

L T,(x,2){u;(x) —u;(z)} dS(x) = f U;(x,2)1;(x) dS(x). “)

To determine the tangent derivative boundary integral equations some geometry
related quantities need to be defined. Let v denote the unit outward normal to the boundary
S at the limit point z and let ({,{,,{; = v) be a proper orthonormal basis as shown in Fig.
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Fig. |. Three-dimensional domain and coordinate systems.

1. Here, the two unit tangent vectors §, and {, can be arbitrarily chosen as long as they
satisfy the condition {; x{, = v. The direction cosines of the basis vectors {,, {,, and {,
with respect to the underlying rectangular coordinate system x,, x,, x; will be determined
and denoted by /; = {;*i,.

Also, in the sequel, ¢, will be the three-dimensional unit pseudotensor, ¢,; will denote
the two-dimensional unit pseudotensor (¢,, = ¢,, = 0,&,, = —¢,, = 1) and it is understood
that the range of the Greek indices is only from 1 to 2 and that the summation convention
is in force.

To obtain the form of the interior representation of the displacement gradients that
leads to the tangent derivative boundary integral equations, the operation

0
Gpxv) V= qukv,,lﬁ,,a—ék, p=12 (5)

is applied to the representation integral for the displacements and use is made of certain
identities pertaining to the fundamental tensors and their derivatives to regularize the
resulting expression. A detailed derivation was given by Muci-Kiichler and Rudolphi
(1993a) and the final equation can be written as

LVpi,-(x, é)[uj(x)—uj(ﬁ) . (5)&#1} dS(X)+J Ypia(x, 8) dS(x ) it 2@

= L[ngj(x, O1,(x) — Wpy(x, 91,(9)]1dS(x), p=1.2, (6)

where
Vi) = ey 55 (.9) ™
W300,8) = Iyt (6.0 ®)
W3 8) = ity () 52 (.0 ©

Yﬁijoz (X, é) = llmj[nm (X) ngm (X, é) Vi Wﬂim (X, E)] + Aulamnm (X) ngj/'(x’ é)
+ (i [, () W i (X, &) = Wim(x, )] (10)

From eqns (7)-(10) it is seen that the kernel ¥4, is O(1/r’) or hypersingular in the limit
as r -0 while W, and W}, are both strongly singular or O(1/r*) and Yy, is O(1/r)
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provided that the boundary S has a continuous unit outward normal at the limit point z.
However, if at the source point & the displacements have Holder continuous first derivatives
and the tractions are continuous, and if the geometry is smooth at the point z, all the terms
in eqn (6) will contain at most weak O(1/r) singularities. Thus, one can let £ »ze S to
obtain the following tangent derivative boundary integral equations

u

Ou; ou.
J; Vﬂij[uj_uj(l) - 6?: (z)la,r,:| dS+L Y0 dS a_CJ @)

o2

- f (Wit — Wyt(@)]dS, f=1,2. (11

In the sequel, the spatial arguments of the functions will not be explicit with the
understanding that the arguments of the two point functions are always (x,z) and the
argument of the other functions is (x) unless explicitly noted otherwise.

NUMERICAL IMPLEMENTATION

The method of point collocation is used to solve the conventional and the tangent
derivative boundary integral equations presented in the previous section. The surface point
z becomes the collocation point and it is convenient to rearrange eqns (4) and (11) in the
following fashion

S So S’ s’ N

0

ou.
fVﬁijude+ J V,;,-j[uj—uj(z)—a—ul(z)la,r,]dS— J Vs dS u,(2)
s 5, s s

ou.
+ { J Yﬁijm dS+ j Yﬂij:t dS—f Vﬁijlad Fy dS} Y (Z)
s S5 5 oL,

=j ngj’de+J [Wg,jtj—Wﬂijtj(z)]dS~f Wy;dSt(z), B=12, (13)
s’ So s

where we have separated the total boundary S into two parts: one denoted by S, which
contains the collocation point z and the remainder denoted by S”.

In eqns (12) and (13) the integrals along S” are integrable in the ordinary sense since
their integrands contain no singularities. However, the terms in the integrals along S,
contain at most O(1/r) singularities, but they are easily removed using polar coordinates
after mapping the actual surface into a two-dimensional space.

Then by the boundary element method, the surface of the domains is discretized or
divided into elements and the two different types of approximations of this process are
carefully delineated. First, the actual geometry associated with each element is represented
using a set of predefined shape or interpolation functions and a set of known geometric
parameters. Second, on a given element, the behavior of the field variables is approximated
through the use of shape functions and “‘generalized coordinates” or “nodal degrees of
freedom”. Thus, in a general sense, the geometric and the functional representations associ-
ated with a given element are independent approximations. Although it is common practice
to use isoparametric elements in which the geometry and the field variables are interpolated
by the same set of shape functions, this approach is not convenient for elements with a
discontinuous or partially discontinuous functional representation or when the field vari-
ables are interpolated using polynomials of high order.
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In the present implementation, the geometry and the field variables are approximated
on the elements using completely different sets of shape functions. The coordinates on an
element are determined by

X = Z N,(mon)Ix]’, i=1,2.3, (14)
J=)

where n, and #, are intrinsic coordinates, # is the number of geometric nodes on the element,
N,(n,,1,) are shape functions, and [x;]” denotes the ith coordinate of the Jth geometric
node. The particular choice of the shape functions depends only on the surface to be
approximated.

The type of interpolation functions for the approximation of the field variables on a
given element depends on the number of independent equations available at each collocation
point or functional node. In the usual boundary element method only the conventional
boundary integral equations (12) are collocated at each functional node and the dis-
placements u; (and similarly the tractions ¢;) are approximated by

Z MJ("] I’] ) ] - I= 1,2,3, (15)

where m is the number of functional nodes on the element, M,(n,%,) are the conventional
shape functions and [u;}” is the ith displacement at the Jth functional node. By eqn (15)
there are three degrees of freedom associated with each functior~l node and eqns (12) are
the requisite equations to determine three unknowns at each node by collocation. However,
since the six tangent derivative boundary integral equations (15) are numerically inde-
pendent of the three displacement equations (12), it is possible to simultaneously collocate
all nine equations at the same spatial locations in order to formulate higher order elements.

By this approach, the stronger continuity requirements of the derivative equations take
precedence over the ones imposed by the displacement equations and, consequently, proper
element and collocation point selection must be observed. The shape functions used to
interpolate the field variables should provide first derivative continuity of the displacements
u; and zeroth derivative continuity of the tractions ¢, at the collocation points. Also, the
approximation of the geometry at those locations should be sufficiently smooth so as to
guarantee continuity of the tangent vectors.

With nine equations collocated at each one of the functional nodes of an element, it is
possible to incorporate the nodal values of the surface gradients of the displacements and
the tractions into the interpolation of the field variables. For that purpose, orthonormal
basis (s;,s,, n) are introduced at each of the functional nodes of the element. Since the two
unit tangent vectors s, and s, can be arbitrary provided that s, xs, = n, s] and s? are
identified as the two particular directions associated with the Jth functional node and
¢, =s] and {, =sj are used to denote tangent directions when the tangent derivative
equations (13) are collocated there. Furthermore, if several neighboring elements share
the same functional node, then all will use the same unit vectors s; and s, at that
particular location. With these considerations in mind, the functional representation of the
displacements and the tractions over an element are written as

u;, = i { Hi(n1.m2)[u] +HJ('71=’72)I: :| +H> (’7]’"2)[ ]} (10
1

J=

f; = i { Hi(n, )0l +HJ(’71»'12)[ :| +H2(’71J72)|: ]} (7

J=1

In these expressions the three shape functions Hy, HY, and HY associated with the Jth
functional node are such that
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ok ok 1, for K=J
HO(r’l,’h): 0, fOI' K#J

oHY, oH
aK(rh,nz)— a5k (m,nz)—O, forall K (18)
H . & 1, for K=J
'(%;1?('71,'72)— 0, for K#J
oH
Hi(m,m) = 3¢ s (rh, 3)=0, forallK 19)
H) . « 1, for K=J
W("]’nZ 0, for K#J
Hi(nf,n%) = a,( (111, 3) =0, forallK (20)

where K = 1,2,...,m and n¥ and »% represent the local coordinates of the Kth functional
node.

From eqns (18)-(20) it can be seen that the shape functions Hj, HY, and H3
(J = 1,2,...,m) must be related to geometric parameters associated with an element. Conse-
quently, the complete set of shape functions should be established individually for each
element in the discretization of the domain. However, the process of finding these interp-
olation functions is relatively easy since they can be computed numerically through the use
of the “geometry independent” shape functions A%, HY, and A% (J=1,2,...,m) that
satisfy the following conditions

. 1, for K=1J
HO(”M”Z): O, for K#J

oH,
ar, 19”2) =

An%y=0, forallk 21)
o . . B 1, for K=J
W( 1”12)_ 0, for K#J

H,(n%.n )— =0, forallK 22)

3111 1, for K=J
(’71,’72) 0, for K#J

Hi(n%,n )_ n%) =0, forall k. (23)

The relationship between the two sets of shape functions mentioned above can be
established through the expression that relates the derivatives of Hj, HY, and H? with
respect to the local coodinates #, and 7, to the derivatives of the shape functlons in the
directions given by s, and s,. Using the results of Appendix A one can write

SAS 31:11-F
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0H? 0HY
0s, _ »»1_ [(gzzel—glzez)'sl (gllez—gz1e1)'sl] on, (24)
OHY Gl(g9:.6,~g1:€2)°s; (g,.€:—g,.€))"s, OHY
(3.3‘2 anZ
oHY o0HY
ds, _ I:jn Alz:l on, ’ (25)
5]_]{ n An ayi
ds .

where e, = (0x,/0n,)i, are basis vectors related to the local coordinates, Jup = €,° €5 denote
“surface components” of the metric tensor, G = det (94)and L=0,1,2.

From eqns (21)—(23), together with eqn (25), it is seen that eqns (18)—(20) are satisfied
by the choices of

H{J(’?h’?z) = FI{)("IH”2) (26)
1 . .

Hjx('lh'?z) = [7]7{[Azz]JHjl('h,ﬂz)—[Azl]Jsz(ﬂl,ﬂz)} 27
1 . A

sz("h’ﬂz) = W{[A11]JH12(711,’12)—[A12]JH11('71,772)}a (28)

where 4 = A,,4,,— A ,,4,, and the notation [-]’ is used to specify quantities evaluated at
the Jth functional node.

The four terms 4,5 can be computed at each one of the functional nodes of an element
if the components dx;/dn, of the basis vectors e, can be determined at those locations. This
task poses no difficulty since it can be accomplished using the geometric representations of
the element. From eqn (14) it is immediate that

Ox; " 0N, 7
= B — . xi N = 1,2, 3. 29
. &~ on. (M1>m2)[x] (29)

Alternately, since the shape functions A%, A%, and A are related only to the parametric
coordinates n, and #,, they can be established on the intrinsic element in the customary
fashion. For completeness, the interpolation functions for several higher order elements are
presented in Appendix B.

The methodology presented here is general and can be used to implement higher order
elements of different shapes and with any number of nodes. Also, no inversion is necessary
in order to obtain the shape functions Hy, HY, HY associated with a specific element in the
discretization of the domain. These shape functions exist as long as the geometric description
of the element is such that the transformation from the global space to the intrinsic element
coordinates is well defined (the determinant of g,; is neither zero nor infinity).

If the conventional boundary integral equations (12) are collocated at every functional
node in the domain, the tangent derivative equations (13) can be simultaneously collocated
with them only at those locations where the higher order elements are used. Thus, it is
possible to mix different functional element types in a given mesh so that the higher order
elements are only used in the areas where the field variables exhibit rapid changes or where
the tangential displacement or traction gradients are desired.
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COMPUTATION OF THE STRESSES ON THE SURFACE

Once the boundary element solution has been obtained, it is possible to find the stress
and the strain tensors at any location on the boundary S through the functional rep-
resentation on the elements. The details on how these quantities are determined can be
found in Sladek and Sladek (1986) and also in Aliabadi and Rooke (1991). For the case of
the functional nodes of an element, a system of rectangular coordinates x), x%, x3 is
introduced at the particular node under consideration, the orthonormal basis (s}, s,,n) is
identified with the basis (i7,i%,i%) of the primed system and the coefficients of the trans-
formation (from the unprimed basis to the primed one) are defined as Q,,, = i} i,.

After the boundary solution for a given model, the displacement and the traction
vectors u = u,i, and t = 1,i, are known at each of the functional nodes of both the con-
ventional and the higher order elements. Consequently, the stress components on the plane
whose unit outward normal is n are directly given by

0% = Qiemlm- (30)

Also, the strain components &', £5,, and &, = &5, can be found through the expression

o1 ou,, Oup, | 1 N N
Eup = 5 I:Qa'm A +Qﬂ’m 5)}3] = 5 [(sa lm) 6—Sﬂ + (SB l’”) g] (31)

0xj A

if the values of the tangential derivatives du,,/ds, and Ju,,/ds, of the displacement com-
ponents in the unprimed system can be determined at the functional node. From eqn (16)
one can see that for the elements described by eqns (16) and (17) the nodal values of
the tangential derivatives are a part of the approximation for the displacements and,
consequently, they are immediately recovered from the boundary solution. However, for
the conventional elements, these quantities must be established through the nodal values
of the displacements and the derivatives of the shape functions M, with respect to the
parametric coordinates n, and #,.
Using the results presented in Appendix A we have

ou;, 1

Ou; ou;
b;;=5|:(922e1_gIZeZ)%:+(glle2_921el)%:|'saa (32)

where the values of du,/0n, and du;/dn, can be determined from eqn (15) as

ou, & 0M,
ana J=1 ar’a

()]’ (33)

Finally, the remaining unknown stresses and strains in the primed system can be
obtained using Hooke’s law, and their counterparts in the unprimed system are readily
determined through the transformation law for second-order tensors.

The procedure used here to compute the stress and strain states at the functional nodes
of the higher order elements exhibits a major difference relative to that employed for the
conventional elements. In the case of the higher order elements, the tangential gradients
are incorporated as part of the formulation of the problem and are directly obtained as
part of the boundary solution. However, for the conventional elements, these quantities
must be established through the derivatives of the functional representation for the dis-
placement components. Of course, the accuracy that can be expected from the two
approaches will be different.

In the previous section it was shown that the shape functions H9, H”, and H? associated
with the higher order elements are established on an element by element basis using the
geometry independent shape functions H3, A7, and A’ together with some geometric
parameters related to the specific element under consideration. This may seem to add a
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Fig. 2. Simply supported beam subject to a sinusoidal load.

“computational cost’ to the higher order elements that is not present for the conventional
ones. However, this is not true if the desired output from the boundary element code must
include the values of the stresses or the strains at the functional nodes. Comparing eqns
(27) and (28) with eqn (32) one can see that for both element types it is necessary to
determine e,, g4, and G at each functional node. The only difference is that for the higher
order elements this is done during the generation of the system of equations whereas for
the conventional elements this is performed as a post-processing task.

The computation of the stress and the strain tensors at surface points that are not
functional nodes follows the same procedure for both element types. Here the traction
components f,, used in eqn (30) and the displacement gradients du,,/ds, and du,,/0s, needed
in eqn (31) must be obtained, respectively, from the functional representation for the
traction and the displacement components. Consequently, in this case, the difference in
accuracy will be related to the use of a “p”” boundary element method instead of an “h”
one.

NUMERICAL RESULTS

To demonstrate that the formulation proposed in this paper is computationally stable
and to illustrate the accuracy of the higher order elements, the test problem of a simply
supported beam subject to a continuously distributed sinusoidal load at its top surface is
employed. Figure 2 shows the cross-section of the beam in the x,x, plane and its loading.
The length, height, and thickness of the beam are denoted by /, 4, and ¢, respectively. With
further boundary conditions applied to the beam such that a state of plane strain prevails
inside the elastic medium, an analytical solution for the problem can be found as in Little
(1973). Under these circumstances, the only nonzero displacement components are

u, = acos wx, {[bw?x, —2c(1 —v)] cosh wx, +w[b(1 —2v) —cx,] sinh wx,} +d  (34)
u, = asin wx, { —w[2b(1 —v) +cx,] cosh wx, + [c(1 —2v) + bw’x,] sinh wx,}, (35)
where the four constants a, b, ¢, and d are given by the following expressions

2q(1+v)

= E) 36
4= Ew(cosh 2wh—1—2w*h?) (36)
b = wh cosh wh+sinh wh (37)

¢ = w?h sinh wh (3%)

h . wh
d= g w(sinh wh— wh) <wh cosh % — (2 —4v)sinh W2) (39)



Formulation of boundary elements using boundary integral equations 1575

X2
T 104 nodes, 34 elements, 312 dof

Fig. 3. Mesh for the quadratic *‘serendipity” elements.

In the above equations, g4 denotes the magnitude of the sinusoidal load, E is Young’s
modulus, v is Poisson’s ratio, and w = n/l.

To compare the performance of the higher order elements with the conventional ones,
the two models shown in Figs 3 and 4 were used. Note that the geometric nodes of the
elements have been omitted and only the functional nodes are displayed. The dimensions
of the beam are / = 10 and ¢t = 4 = 5 and the material properties are taken as v = 0.3 and
E = 200. The first model consists of 34 elements with 104 functional nodes and 312 degrees
of freedom. Here, the shape functions of the continuous quadratic element of the “ser-
endipity”’ family are used for the functional representation of the field variables whereas
the shape functions of the continuous linear element of the “‘serendipity” family are
employed for the approximation of the geometry. For the second model, the mesh consists
of 10 elements with 32 functional nodes and 288 degrees of freedom. In this case, the shape
functions of the discontinuous and partially discontinuous incomplete quartic elements
given in Appendix B are used for the functional representation. Also, as in the first model,
the geometry of the elements is approximated using the shape functions of the continuous
linear element of the ‘‘serendipity” family.

The differences between the two models are evident. Although both meshes have
approximately the same number of degrees of freedom, the second with higher order
elements has 69% less functional nodes and 71% less elements than the first with con-
ventional elements. On the other hand, from Fig. 4 one can see that none of the functional
nodes is located at the edges or corners of the beam, which avoids the problem of a non-
unique normal.

In the calculations, the magnitude of the sinusoidal load was chosen as g = 1 and the
values from the analytical solution were used as boundary conditions for both models. The
faces of the beam at x; = 0 and x; = ¢ are subject to the conditions ¢, =0, ¢, = 0, and
u; = 0 and the surface at x, = 0 is traction free. Also at x, = A, the tractions are specified

as t; =0, 1, = —gsin wx,, and ¢; = 0. For the face of the beam at x, = 0, u, is specified
X2
T 32 nodes, 10 elements, 288 dof
e °
® . b
°
L ot by —>Xx 1
°
™ ®

X3
Fig. 4. Mesh for the incomplete quartic elements.
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Fig. 5. Vertical displacement on the front face of the beam at x, = 5.

according to eqn (34) and the remaining conditions are given as u, = 0 and ¢; = 0. Finally,
for the surface at x, = /, the conditions ¢, = 0, u, = 0, and ¢; = 0 are prescribed. It should
also be mentioned that, whereas for the conventional elements it is only necessary to specify
either a displacement or a traction component at every functional node in the domain, for
the higher order elements one must also provide the nodal values of the tangential derivatives
of the prescribed field variables.

After the primary solution, the values provided by each model are compared to the
analytical solution. For the beam example here, all the results are independent of x; since
the boundary conditions maintain a state of plane strain through the beam. Furthermore,
although the values provided by both models are close to the exact solution, some differences
in performance between the two element types can be detected.

Results for the vertical displacement u, on the front face of the beam at x, = 5 are
shown in Fig. 5. For the higher order elements, the values shown at x, =0 and x, =5
correspond to nodes located on the bottom and top surfaces of the model. In this case it is
seen that the conventional elements provided more accurate values for the displacement
component than the higher order elements.

Figure 6 shows a comparison for the traction component ¢, on the right face of the
beam. Here the results provided by the conventional elements show some deviation with
respect to the analytical ones. However, the values provided by the higher order elements
fall almost on the analytical curve.

b I\

0.7 i '\
2.6 / ‘\
8.5

a0z E ] \
0.k / \
oa e
2.1 :L :C(lJrg\vgrnticmgllr \

2 | |
2 1 2 3 4 5
X2

Fig. 6. Vertical traction on the right face of the beam.



Formulation of boundary elements using boundary integral equations 1577

0.2 r T T
1 —Exact
ge -e-Higher Order |
[ —-Conventional
~0.2 | \\
PR S
. | &
0'22(5,32) -8.6 \\
-0.8 | \\
-1
-1.2 .
2 1 2 3 4 S

X2

Fig. 7. Normal stress o, on the front face of the beam at x, = 5.

For the stress component ¢,,, the results on the front face of the beam at x, = 5 and
x4 = 1.25 are shown in Figs 7 and 8, respectively. In Fig. 7, the values for the higher order
elements shown at x, = 0 and x, = 5 correspond to nodes located on the bottom and top
surfaces of the model. Also, in Fig. &, the values for the higher order elements shown at
x; =0 and x, = 10 correspond to nodes located on the left and right faces of the beam.
For both cases it is seen that the values corresponding to the higher order elements are
closer to the analytical solution than the ones for the conventional elements. In addition,
these figures show that for the conventional elements the values of a,, are discontinuous
across element interfaces.

Figure 9 presents the values for the strain component g, on the front face of the beam
at x, = 3.75 and Fig. 10 shows a plot for ¢,, on the top face of the beam. In the case of
Fig. 9, the values for the higher order elements at x, == 0 and x, = 10 were taken from
nodes on the left and right faces of the beam. In both instances the values provided by the
higher order elements are in good agreement with the exact solution. However, in Fig. 9 it
is seen that the results for the conventional elements deviate significantly from the analytical
solution. Also, Fig. 10 reveals that in certain cases the quadratic elements have difficulties
to follow concavity of the theoretical curve.

Finally, Fig. 11 shows a comparison for the displacement gradient du,/du, on the right
face of the beam. Here the data points for the higher order elements fall very close to the
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a0 [ /
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Fig. 8. Normal stress o,, on the front face of the beam at x, = 1.25.
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Fig. 9. Normal strain ¢,, on the front face of the beam at x, = 3.75.
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analytical curve whereas the results for the conventional elements exhibit a considerable
deviation.

It is important to mention that in the plots shown in Figs 7-11 all the data points
correspond to values at the collocation points. For the higher order elements, these are the
locations where they are expected to show its best performance since all the displacement
gradients are obtained either directly from the solution to the integral equations or as parts
of the boundary conditions. However, for the conventional elements, these are the places
where they provide the worst values for the displacement gradients in the direction per-
pendicular to the element boundary.

DISCUSSION AND CONCLUSIONS

A general methodology to implement higher order elements for three-dimensional
problems has been established. For elastostatic problems, the simultaneous collocation of
the three displacement and the six tangent derivative boundary integral equations at the
same boundary points proved to be computationally stable and allowed the use of the nodal
values of the displacements, the tractions and their tangential derivatives as the degrees of
freedom associated with the functional representation of the boundary variables. Since the
tangential gradients of the displacements were incorporated in the formulation of the
problem, their values at the functional nodes of the higher order elements were immediately
retrieved from the boundary solution with an accuracy comparable to the primitive
variables. Consequently, the tangential strains were directly obtained and all the stress
components were easily computed using Hooke’s law. In the case of the conventional
elements, the tangent derivatives of the displacements (and consequently the tangential
strain components) were established in a post-processing manner using the derivatives of
the shape functions and the nodal values of the displacements and thus, less accurate values
were found.

Although the number of degrees of freedom per node for the higher order elements is
three times that for the conventional elements, the results obtained for a test problem show
that this new type of elements is promising. For models with approximately the same
number of boundary unknowns, the results provided by the higher order elements more
closely matched the stresses, strains, and tangential displacement gradients predicted by the
analytical solution. Of course, this fact is of practical importance since it reveals that a
coarse mesh of higher order elements can be adequately used to model portions of the
boundary where the field variables exhibit rapid changes. Also it should be pointed out that
it is possible to use a combination of the conventional and the higher order elements for
the discretization of the surface variables.

For the higher order elements in which some of the functional nodes are at the element
edges, C' continuity of the displacements is only obtained at those particular points on the
element interfaces. This situation, however, does not seem to pose difficulties to the evalu-
ation of the regularized integrals associated with the derivative equations as long as the
approximation of the boundary is sufficiently smooth at functional nodes that are shared
by several elements. In fact, the conditions for the existence of the hypersingular integrals
given by Giinter (1967) show that the degree of continuity required from the density
functions really depends on the smoothness of the surface at the source point.
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APPENDIX A: DETERMINATION OF THE SURFACE GRADIENTS

In the formulation of elements in three dimensions, it is customary to map the surface geometry into a local
two-dimensional space characterized by two independent orthogonal coordinates, say n, and #,. The surface
gradients of a given function are readily determined through the use of tensor analysis, carrying out all required
operations in the “global” (physical) space rather than in the local (mapped) one. For that purpose, as shown in
Fig. Al, the global curvilinear coordinates (p', p?, p*) with basis vectors (e, e, e;) and reciprocal basis vectors
(e',e? e*) are introduced such that the p' and p? coordinate curves in the global space correspond, respectively,
to the , and #, coordinate curves in the local space.

If R denotes the radius vector from the origin of the underlying rectangular coordinate system x,, x,, x; to
a point on the element, the basis vectors e, and e, are

_6R_6R 0x; ,

T T an om (AD

The directional derivative of a scalar field ¢ in the direction of a unit vector p is given by [see, for example,
Borisenko and Tarapov (1979)]

Fig. Al. Coordinate systems associated with a surface boundary element.
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de dp o a<p 3 6¢
- L A2
& =p'Vo=p° [e P +el S +e W (A2)

where d¢/dp’ are the covariant components of the gradient vector Vo. However, if one chooses a unit vector p
tangent to the surface, then the above expression becomes

7
Y = e+ (A3)

If the covariant components of the metric tensor are denoted by g, = ¢, e, it can be shown that

{P.'e;}=|:9n glzjl—l{l"el}’ (A%)
p-e 9n 922 pre;

where
0x; Oxy
=— . AS
9= o0, oy @)
Using eqn (A4) and recalling that p' = n, and p* = 17,, eqn (A3) can be written as
d o
dZ G[(gzzel glzez)a +(g1.€,— gZIeI)%:I'P, (A6)

where G = det (g,5)-
If one 1dent1ﬁes u; with @ and if s, and s, are orthogonal unit tangent vectors such that s, xs, = n, then egn
(A6) establishes the surface gradients of the rectangular components of the displacement vector u as

o 1
as [(gzzel gnez)a "+ (g2~ yz.e,)aﬂ] (A7)

From eqns (Al), (AS), and (A7) it is evident that to compute the values of du,/0s, the quantities dx,/dn, and
0Ou;/0n, need to be determined.
In general, the element surface is approximated by

X = Z Nl("h"z)[xl]j, i= 1,2,3, (A8)
J=1

where n is the number of geometric nodes, N,(n,,7,) are the geometric shape functions and [x}’ denotes the ith
coordinate of the Jth geometric node. Consequently

ox;
on,

= i a" (’71,’72)[4‘71] ’ i= 1,2,3. (A9)

Similarly, the approximation for the displacement components ; in a conventional element with m functional
nodes would be

- Ji M)l i=1,23, (A10)

where M,(y1,,1,) are the shape functions associated with the field variables and the notation [}’ is used to specify
quantities evaluated at the Jth functional node. Thus

ou;
on,

aM,

—Z

(n.,nz)[u,]’ i=1,23. (All)

APPENDIX B: SHAPE FUNCTIONS FOR THE HIGHER ORDER ELEMENTS

The procedure used to ‘determine the “geometry independent” shape functions A%, A%, and H?
(J = 1,2,...,m)is similar to that of the finite element method in the derivation of C' continuous two-dimensional
elements. Once the geometry of an element has been defined in the local space characterized by the parametric
coordinates 7, and 7,, the first step is to specify the total number of functional nodes associated with the element
and the specific coordinates for each node. Next, the type of function to be used for the approximation of the
field variables is selected and then conditions (21)~(23) are applied to find the particular set of interpolation
functions. In what follows several sets of polynomial shape functions for quadrilateral elements with sides at

= +1and 7, = +1 are presented.
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Fig. Bl. Discontinuous linear element.

Discontinuous linear element

The simplest higher order element is the one shown in Fig. Bl. There is only one interior functional node
located at (1,,%,) = (0.0) and three shape functions to approximate the field variables: Hi(n,,n,) = 1,
3(n1,12) = n,. This element can be viewed as the counterpart of the constant element
used in the conventional boundary element method. Although it provides a linear variation for the displace-
ment and traction components, the surface gradients of these quantities will be represented as constant values.

Ai(n,n2) =1, and

Incomplete quartic elements

A family of four node, continuous, partially continuous and discontinuous elements is shown in Fig. B2. The
six elements shown have several common characteristics. All elements have four functional nodes and the 12
shape functions can be constructed using an incomplete quartic polynomial in which the terms #{, nin2, and 53

have been excluded. The shape functions corresponding to each element are as follows.

(-1.0,-1.0)
(a) Continuous
a2
(-1.041.0) ——o;—— (+0.5,+1.0)
4
N,
(-1.0,-0.5@ 1 (+0.5,-0.5)
(c) Partially discontinuous:
two contiguous sides
N2
83 |(+0.5,+0.5)
>N,
02 |(+0.5,0.5)
(e) Partially discontinuous:
three sides

(-1.0,+1.0)

(-1.0,0.5)

1 2

(+1.0,-0.5)

(b) Partially discontinuous:
one side only
N2
-1.0,40.5)9 4 3 @ (+1.0,+0.5)
n
(-1.0-0.59 1 2 @ (+1.0,-0.5)

(d) Partially discontinuous:
two opposite sides

(-0.5,40.5)

(-:0.5,-0.5)

N,

N

40 3

(+0.5,40.5)

l1e o2

(f) Discontinuous

Fig. B2. Incomplete quartic elements.
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(a) Continuous incomplete quartic element.
AY0rom) = =30 = D= DIm O+ D +n:6.+1) =2
1011,m2) = =30+ D~ D —1D?
Yun) = =401 — D+ D —1D?
Hmin) =401+ D0 —Din 01 — D +ma(n+ 1) -2}
men) = —30n =D —Dm+1)?
301um) =30+ D2+ D= 1D?
srn) = =3+ D+ Din (= D +n201,—1) - 2]
3
1
3
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4
0
4
1
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% t) m) I) m) :’ m)

(Mi,12) =3 =D+ D +1?

(1,m2) =301+ D= D2+ 1)?

A1) =401 — D02+ Dimn + D +n2(1—1) -2
01,12 =40+ D+ D —1D?

(1,12) = =401 — D= D2 +1)%
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(b) Incomplete quartic element discontinuous on one side.
o1, m2) = — 30— D), — D)[9,(n, + 1) +4n,(4n,+ 1) —20]
101,m2) = =40+ D — D = 1)?

300,m2) = — 30— D@0+ D —1)?

§010,m2) = 20+ D2 — D97, 01—~ 1) +4n,(4n,+ 1) —20]
%('71,'72) =—10 =D — D0+ l)z

30,12 =30+ D@02+ D~ 1)
3
[}]
?
3
2

m) m) m) tx :» tx mx

(M,12) = — s 0+ D@2+ D9, (7 — 1) +4n,(4n, - 5) — 14}
(nsm2) = 1101 = D22+ D1 +1)°

.12) = 1501 + D12 = D@2y +1)?

Hi(m,n2) = bt — D@02+ D91 (1, + D) +4n,(dn, —5) - 14]
Ai(i,m2) = 0+ D@2+ D —1)?

Hi(1,m2) = — 7500 — D — DR+ 17

m) t)

(¢) Incomplete quartic element discontinuous on two contiguous sides.
Hi(n,n2) = — & @0 — D~ Dl (4n,+5) + 12040, + 1) — 4]
Hi(,n2) = — A+ D0 — D2y, —-1)?
Ai(n,n2) = —HQn— D2y + D —1)°
Hi01,m2) = # (1 + D12 — D[2m (4, — 1) +2n5(4n,+ 1) —11]
AHini,na) = — £ Qn— 1D — D, +1)?
i, m2) = £+ D@+ D — D2
A3(n1,m2) = = (1 + D@1y + Dl @, — D +n5(4n, - 5)—4)
Hi(1,m2) = FH Q20— DQRny+ 1), +1)?2
H3(m,m2) = A+ D~ D202+ 1)?
AHi01,m2) = & @20y~ DQny+ D[20, (4, +5) +20,(4n, — 5)— 5]
AHii,n2) = #501+ D2, + 120, — 1)
Hii,m2) = —HQn— D — DR+ 12

(d) Incomplete quartic element discontinuous on two opposite sides.
AHi(m,n3) = =401 — D@0 — DO+ 1) + 2122, + 1) - 2]
Ai(m,n2) = =301+ D= D, —1)?
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Hi(mun) = — &0 — D@0+ D2, —1)?
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(e) Incomplete quartic element discontinuous on three sides.
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( f) Discontinuous incomplete quartic element.
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